A Light Intro To Boosting
Machine Learning

- Not as cool as it sounds
 - Not iRobot
 - Not Screamers (no Peter Weller 😞)
- Really just a form of
 - Statistics
 - Optimization
 - Probability
 - Control theory
 - ...
- We focus on classification
Classification

• A subset of machine learning & statistics
• Classifier takes input and predicts the output
• Make a classifier from a training dataset
• Use the classifier on a test dataset (different from the training dataset) to make sure you didn't just memorize the training set
• A good classifier will have low test error
Classification and Learning

- Learning classifier learns how to predict after being shown many input-output examples
- Weak classifier is slightly correlated with correct output
- Strong classifier is highly correlated with correct output
- (See the PAC learning model for more info)
Methods for Learning Classifiers

- Many methods available
 - Boosting
 - Bayesian networks
 - Clustering
 - Support Vector Machines (SVMs)
 - Decision Trees
 - ...

- We focus on boosting
Boosting

• Question: Can we take a bunch of weak hypotheses and create a very good hypothesis?
• Answer: Yes!
Brief History of Boosting

• 1984 - Framework developed by Valiant
 – Probably approximately correct (PAC)
• 1988 - Problem proposed by Michael Kearns
 – Machine learning class taught by Ron Rivest
• 1990 - Boosting problem solved (in theory)
 – Schapire, recursive majority gates of hypotheses
 – Freund, simple majority vote over hypotheses
• 1995 - Boosting problem solved (in practice)
 – Freund & Schapire, AdaBoost adapts to error of hypotheses
Try Many Weak Hyps

Weak Hyp

Weak Hyp
Try Many Weak Hyps

Combine T Weak Hyps

- Weight 1
- Weak Hyp 1

- Weight 2
- Weak Hyp 2

- ...
- ...

- ...

- Weight T
- Weak Hyp T

T Weak Hyps = 1 Strong Hyp
T Weak Hyps = 1 Strong Hyp

Try Many Weak Hyps

Weight 1

Weight 2

Weight T

Combine T Weak Hyps

Weak Hyp 1

Weak Hyp 2

Weak Hyp T

STRONG HYPOTHESIS
Example: Face Detection

• We are given a dataset of images
• We need to determine if there are faces in the images
Example: Face Detection

• Go through each possible rectangle

• Some weak hypotheses might be:
 – Is there a round object in the rectangle?
 – Does the rectangle have darker spots where the eyes should be?
 – Etc.

• Classifier = 2.1 * (Is Round) + 1.2 * (Has Eyes)

• Viola & Jones 2001 solved face detection problem in similar manner
Algorithms

- Many boosting algorithms have two sets of weights
 - Weights on all the training examples
 - Weights for each of the weak hypotheses used
- It is usually clear from context which set of weights is being discussed
Basic Boosting Algorithm

• Initial Conditions:
 – Training dataset \(\{(x_1, y_1), \ldots (x_i, y_i) \ldots, (x_n, y_n)\} \)
 – Each \(x \) is an example with a label \(y \)

• Learn a pattern
 – Use \(T \) weak hypotheses
 – Combine them in an “intelligent” manner

• See how well we learned the pattern
 – Did we just memorize training set?
An Iterative Learning Algorithm

Let w_i^t be the weight of example i on round t

$w_i^0 = 1/n$

For $t = 1$ to T:

1) Try many weak hyps, compute error $\sum_i w_i^t \left[h(x_i) \neq y_i \right]$

2) Pick the best hypothesis: h_t

3) Give h_t a weight α_t

4) More weight to examples that h_t misclassified

5) Less weight to examples that h_t classified correctly

Return a final hypothesis of $H_t(x) = \sum_t \alpha_t h_t(x)$
One Iteration

Dataset

\[w_i^t \] \[x_i, y_i \]
One Iteration

1. Dataset:
 - $w^t_i x_i, y_i$
 - $w^t_i x_i, y_i$

2. Try Weak Hyps:
 - Weak Hyp
 - Weak Hyp
One Iteration

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Try Weak Hyps</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_i^t</td>
<td>Weak Hyp</td>
<td>30%</td>
</tr>
<tr>
<td>x_i, y_i</td>
<td>Weak Hyp</td>
<td>43%</td>
</tr>
<tr>
<td>w_i^t</td>
<td>Weak Hyp</td>
<td>15%</td>
</tr>
<tr>
<td>x_i, y_i</td>
<td>Weak Hyp</td>
<td>68%</td>
</tr>
<tr>
<td>w_i^t</td>
<td>Weak Hyp</td>
<td>19%</td>
</tr>
<tr>
<td>x_i, y_i</td>
<td>Weak Hyp</td>
<td>26%</td>
</tr>
</tbody>
</table>
One Iteration

Dataset

Try Weak Hyps

Error

Weighting

\[\text{Weighting} = \frac{1 - \varepsilon}{\varepsilon} \]

\[= \frac{1 - .15}{.15} \]

\[= 2 \ln \frac{1 - \varepsilon}{\varepsilon} \]

\[= 2 \ln \frac{1 - .15}{.15} \]

\[\alpha_t \]

\[w_i \]

\[x_i, y_i \]
One Iteration

Dataset

Try Weak Hyps

Error

Weighting

Weak Hyp

Weak Hyp

Weak Hyp

Weak Hyp

Weak Hyp

Weak Hyp

30%

43%

15%

68%

19%

26%

Weight

α

\[\alpha_t \]

\[2 \ln \frac{1 - \varepsilon}{\varepsilon} \]

\[2 \ln \frac{1 - .15}{.15} \]

h correct

\[w_{i+1}^{t+1} = e^{-\alpha} w_i \]

\[w_i \]

h wrong

\[w_{i+1}^{t+1} = e^{\alpha} w_i \]

\[w_i \]
One Iteration

Dataset
Try Weak Hyps
Error

Weak Hyp
x_i, y_i
w_t
30%

Weak Hyp
x_i, y_i
w_t
43%

Weak Hyp
x_i, y_i
w_t
15%

Weak Hyp
x_i, y_i
w_t
68%

Weak Hyp
x_i, y_i
w_t
19%

Weak Hyp
x_i, y_i
w_t
26%

Error

Weighting

Weight
\alpha_t
2 \ln \frac{1 - \varepsilon}{\varepsilon}

\begin{align*}
 w_{i+1}^{t+1} &= e^{-\alpha} w_i < w_i \\
 w_{i+1}^{t+1} &= e^{\alpha} w_i > w_i
\end{align*}

h correct

h wrong

CURRENT HYPOTHESIS = PREVIOUS HYPOTHESIS + \alpha_t h Weak hyp
Toy Example

- Positive examples
- Negative examples
- 2-Dimensional plane
- Weak hyps: linear separators
- 3 iterations
Toy Example: Iteration 1

Misclassified examples are circled, given more weight

\(\varepsilon_1 = 0.30 \)
\(\alpha_1 = 0.42 \)

Taken from Freund 1996
Toy Example: Iteration 2

Misclassified examples are circled, given more weight

$\varepsilon_2 = 0.21$
$\alpha_2 = 0.65$

Taken from Freund 1996
Toy Example: Iteration 3

Finished boosting

\(h_3 \)

\[\varepsilon_3 = 0.14 \]

\[\alpha_3 = 0.92 \]

Taken from Freund 1996
Toy Example: Final Classifier

\[
\text{sign}(0.42 + 0.65 + 0.92)
\]

Taken from Freund 1996
Questions

• How should we weight the hypotheses?
• How should we weight the examples?
• How should we choose the “best” hypothesis?
• How should we add the new (this iteration) hypothesis to the set of old hypotheses?
• Should we consider old hypotheses when adding new ones?
Answers

• There are many answers to these questions
• Freund & Schapire 1997 – AdaBoost
• Schapire & Singer 1999 – Confidence rated AdaBoost
• Freund 1995, 2000 – Noise resistant via binomial weights
• Friedman et al 1998 and Collins et al 2000 – Connections to logistic regression and Bregman divergences
• Warmuth et al 2006 – “Totally corrective” boosting
• Freund & Arvey 2008 – Asymmetric cost, boosting the normalized margin
What's the big deal?

- Most algorithms start to memorize the data instead of learning patterns
- Most test error curves
 - Train decreases
 - Test starts to increase
 - Increase in test is due to “overfitting”
- Boosting continues to learn
 - Test error plateaus
- Explanation: margin
What's the big deal?

- One goal in machine learning is “margin”
 - “Margin” is a measure of how correct an example is
 - If all hypotheses get an example right, we'll probably get a similar example right in the future
 - If 1 out of 1000 hypotheses get an example right, then we'll probably get it wrong in the future
 - Boosting gives us a good margin
- Margin frequently converges to some cumulative distribution function (CDF)

- Rudin et al. show that CDF may *not* always converge
End Boosting Section

Start Final Classifier Section
Final Classifier: Combination of Weak Hypotheses

• Original usage of boosting was just adding many weak hypotheses

• Adding weak hyps could be improved
 – Some of the weak hypotheses may be correlated
 – If there are a lot of weak hypotheses, the decision can be very hard to visualize

• Why can't boosting be more like decision trees
 – Easy to understand and visualize
 – A classic approach used by many fields
Final Classifier: Decision Trees

- Follow a series of questions to a single answer
- Does the car have 4 or 8 cylinders?
 - If \#cylinders=4 or 8, then was the car made in Asia?
 - If Yes then you get good gas mileage
 - If no then you get bad gas mileage
 - If \#cylinders=3,5,6, or 7 then poor gas mileage
Decision Tree

- **# Cylinders**
 - 4 or 6
 - 8

- **Car Manufacturer**
 - Honda/Toyota
 - Other

- **Car Type**
 - SUV/Truck
 - Sedan
 - Other

- **Maximum Speed**
 - >120
 - <120

- **Quality**
 - Good
 - Bad
4 Cylinder, Honda Sedan, Max Speed: 100

Decision Tree

1. # Cylinders
 - 4 or 6
 - Car Manufacturer
 - Honda/Toyota
 - GOOD
 - Other
 - BAD
 - 8
 - Car Type
 - SUV/Truck
 - BAD
 - Sedan
 - Maximum Speed
 - >120
 - BAD
 - <120
 - Good
 - Other
 - Good
4 Cylinder, Honda Sedan, Max Speed: 100

Cylinders

4 or 6

Honda/Toyota

Other

Car Manufacturer

BAD

GOOD

SUV/Truck

Car Type

Other

Sedan

Maximum Speed

<120

BAD

Good

>120

BAD

Good
Decision Tree

1. **# Cylinders**
 - 4 or 6
 - 8

2. **Car Manufacturer**
 - Honda/Toyota
 - Other
 - **GOOD**
 - **BAD**

3. **Car Type**
 - SUV/Truck
 - Sedan
 - Other
 - **BAD**
 - **Good**

4. **Maximum Speed**
 - >120
 - <120
 - **BAD**
 - **Good**

Example Car: 4 Cylinder, Honda Sedan, Max Speed: 100
4 Cylinder, Honda Sedan, Max Speed: 100

Cylinders

4 or 6 8

Cylinders

Car Manufacturer

Honda/Toyota Other

GOOD BAD

Car Type

SUV/Truck Sedan Other

BAD GOOD

Maximum Speed

>120 <120

BAD Good
Another Example
8 Cylinder, Nissan Coupe, Max Speed: 180

Cylinders

4 or 6

Honda/Toyota

BAD

SUV/Truck

BAD

Sedan

Maximum Speed

>120

BAD

<120

Good

Other

Good
Decision Tree

- **# Cylinders**
 - 4 or 6
 - 8

- **Car Manufacturer**
 - Honda/Toyota
 - Other

 - **GOOD**
 - **BAD**

- **Car Type**
 - SUV/Truck
 - Sedan
 - Other

 - **BAD**

- **Maximum Speed**
 - >120
 - <120

 - **BAD**
 - **Good**
8 Cylinder, Nissan Coupe, Max Speed: 180

Cylinders
- 4 or 6
- 8

Car Manufacturer
- Honda/Toyota
- Other

Car Type
- SUV/Truck
- Sedan
- Other

Maximum Speed
- >120
- <120
Decision Trees

- Follow a single path until reach decision
- No confidence levels
- Many criterion for growing decision trees
Final Classifier: Alternating Decision Tree

- Each path in tree is series of weak hypotheses
- Does the car have 4 or 6 cylinders?
 - Yes => +5, No => -6
- Is the car a Toyota or Honda?
 - Yes => +8, No => -3
- A Honda with 8 cylinders => +2
Alternating Decision Tree

- # Cylinders
 - 4 or 6
 - 8
 - + 5
 - - 6
 - + 8

- Car Manufacturer
 - Honda/Toyota
 - Other
 - - 4
 - + 8

- Car Type
 - SUV/Truck
 - Other
 - - 5
 - + 3
Alternating Decision Tree

8 Cylinder, Toyota Sedan

- 1

Cylinders
- 6
+ 5

Car Manufacturer
- 4
+ 8

Car Type
- 5
+ 3

Score: 0
Alternating Decision Tree

8 Cylinder, Toyota Sedan

Score: -1
Alternating Decision Tree

8 Cylinder, Toyota Sedan

- 1

Cylinders

4 or 6

- 6

8

+ 5

Car Manufacturer

Honda/Toyota

Other

+ 8

- 4

- 5

SUV/Truck

Other

Car Type

Score: -7
Alternating Decision Tree

8 Cylinder, Toyota Sedan

Score: +1
Another Example

• Previous example was pretty simple
 – Just a series of decisions with weights
 – A basic additive linear model

• Next example shows a more interesting ATree
 – Has greater depth
 – Some weak hypotheses abstain

• Two inputs are shown
8 Cylinder, Nissan Sedan, Max Speed: 180

Score: -1
8 Cylinder, Nissan Sedan, Max Speed: 180

Cylinders

- 1

Car Manufacturer

Honda/Toyota: + 8

Other: - 4

Car Type

SUV/Truck: - 9

Other: + 7

Max Speed

< 110: + 2

> 110: - 3

Cylinders

4 or 6: - 1

8: + 2

Score: - 7
8 Cylinder, Nissan Sedan, Max Speed: 180

Cylinders

- 4 or 6
- 8

Car Manufacturer

- Honda/Toyota
- Other

- 4
- 6
+ 8
+ 5

Max Speed

- < 110
- > 110

Car Type

- SUV/Truck
- Other

- 9
- 7
+ 2
- 3
- 1
+ 2

Score: - 11
8 Cylinder, Nissan Sedan, Max Speed: 180

Cylinders

4 or 6: +5
8: -6

Car Manufacturer

Honda/Toyota: +8
Other: -4

Score: -9

Max Speed

<110: +2
>110: -3

Cylinders

4 or 6: -1
8: +2

Car Type

SUV/Truck: -9
Other: +7
Another Example
8 Cylinder, Honda SUV, Max Speed: 90

Score: -1
8 Cylinder, Honda SUV, Max Speed: 90

Cylinders

- 1

+ 5

- 6

+ 8

- 4

Max Speed

< 110

> 110

- 2

- 3

- 1

+ 2

Cylinders

4 or 6

8

Car Manufacturer

Honda/Toyota

Other

- 9

+ 7

Car Type

SUV/Truck

Other

Score: - 7
8 Cylinder, Honda SUV, Max Speed: 90

Cylinders

4 or 6 -> + 5
8 -> - 6

Car Manufacturer

Honda/Toyota -> + 8
Other -> - 4

Max Speed

< 110 -> + 2
> 110 -> - 3

Cylinders

4 or 6 -> - 1
8 -> + 2

Car Type

SUV/Truck -> - 9
Other -> + 7

Score: + 1
Another Example
4 Cylinder, Honda SUV, Max Speed: 90

- 1

Cylinders

4 or 6 8

+ 5 - 6 + 8 - 4

Car Manufacturer

Honda/Toyota Other

Max Speed

< 110 > 110

+ 2 - 3 - 1 + 2

Cylinders

4 or 6 8

Car Type

SUV/Truck Other

- 9 + 7

Score: - 1
4 Cylinder, Honda SUV, Max Speed: 90

Cylinders

4 or 6

8

+ 5

Car Manufacturer

Honda/Toyota

Other

- 4

Score: + 4

Max Speed

< 110

> 110

+ 2

- 3

Cylinders

4 or 6

8

- 1

+ 2

Car Type

SUV/Truck

Other

- 9

+ 7
4 Cylinder, Nissan SUV, Max Speed: 90

Cylinders

Car Manufacturer

Honda/Toyota Other

4 or 6 8

+ 5 - 6 + 8 - 4

Max Speed

< 110 > 110

+ 2 - 3 - 1 + 2

Cylinders

Car Type

SUV/Truck Other

- 9 + 7

Score: + 6
4 Cylinder, Nissan SUV, Max Speed: 90

Scores:
- # Cylinders:
 - 4 or 6: +5
 - 8: +8

- Car Manufacturer:
 - Honda/Toyota: +8
 - Other: -4

- Car Type:
 - SUV/Truck: -9
 - Other: +7

- Max Speed:
 - < 110: +2
 - > 110: -3

Score: +2
4 Cylinder, Nissan SUV, Max Speed: 90

Cylinders

- 4 or 6
- 8

Car Manufacturer

- Honda/Toyota
- Other

Score: +8

Max Speed

- < 110
- > 110

Cylinders

- 4 or 6
- 8

Car Type

- SUV/Truck
- Other

Score: +8

Car

Manufacturer

- Honda/Toyota
- Other
ATree Pros and Cons

Pros

- Can focus on specific regions
- Similar test error to other boosting methods
- Requires far fewer iterations
- Easily visualizable

Cons

- Larger VC-dimension
 - Increased proclivity for overfitting
Error Rates

Taken from Freund & Mason 1997
Some Basic Properties

- ATrees can represent decision trees, boosted decision-stumps, and boosted decision trees
- ATrees for boosted decision stumps:

```
  ATrees for decision trees:
  Decision Tree
  Alternating Tree
```

- ATrees for boosted decision stumps:
Resources

- Boosting.org
- JBoost software available at http://www.cs.ucsd.edu/users/aarvey/jboost/
 - Implementation of several boosting algorithms
 - Uses ATrees as final classifier
- Rob Schapire keeps a fairly complete list http://www.cs.princeton.edu/~schapire/boost.html
- Wikipedia